MoTea4-mediated polarized growth is essential for proper asexual development and pathogenesis in Magnaporthe oryzae.

نویسندگان

  • Rajesh N Patkar
  • Angayarkanni Suresh
  • Naweed I Naqvi
چکیده

Polarized growth is essential for cellular development and function and requires coordinated organization of the cytoskeletal elements. Tea4, an important polarity determinant, regulates localized F-actin assembly and bipolar growth in fission yeast and directional mycelial growth in Aspergillus. Here, we characterize Tea4 in the rice blast fungus Magnaporthe oryzae (MoTea4). Similar to its orthologs, MoTea4-green fluorescent protein (MoTea4-GFP) showed punctate distribution confined to growth zones, particularly in the mycelial tips, aerial hyphae, conidiophores, conidia, and infection structures (appressoria) in Magnaporthe. MoTea4 was dispensable for vegetative growth in Magnaporthe. However, loss of MoTea4 led to a zigzag morphology in the aerial hyphae and a huge reduction in conidiation. The majority of the tea4Delta conidia were two celled, as opposed to the tricellular conidia in the wild type. Structure-function analysis indicated that the SH3 and coiled-coil domains of MoTea4 are necessary for proper conidiation in Magnaporthe. The tea4Delta conidia failed to produce proper appressoria and consequently failed to infect the host plants. The tea4Delta conidia and germ tubes showed disorganized F-actin structures with significantly reduced numbers of cortical actin patches. Compared to the wild-type conidia, the tea4Delta conidia showed aberrant germination, poor cytoplasmic streaming, and persistent accumulation of lipid droplets, likely due to the impaired F-actin cytoskeleton. Latrunculin A treatment of germinating wild-type conidia showed that an intact F-actin cytoskeleton is indeed essential for appressorial development in Magnaporthe. We show that MoTea4 plays an important role in organizing the F-actin cytoskeleton and is essentially required for polarized growth and morphogenesis during asexual and pathogenic development in Magnaporthe.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A HOPS Protein, MoVps41, Is Crucially Important for Vacuolar Morphogenesis, Vegetative Growth, Reproduction and Virulence in Magnaporthe oryzae

The homotypic fusion and protein sorting protein complex (HOPS) is the first known tether complex identified in the endocytic system that plays a key role in promoting homotypic vacuolar fusion, vacuolar biogenesis and trafficking in a wide range of organisms, including plant and fungi. However, the exact influence of the HOPS complex on growth, reproduction and pathogenicity of the economicall...

متن کامل

MoJMJ1, Encoding a Histone Demethylase Containing JmjC Domain, Is Required for Pathogenic Development of the Rice Blast Fungus, Magnaporthe oryzae

Histone methylation plays important roles in regulating chromatin dynamics and transcription in eukaryotes. Implication of histone modifications in fungal pathogenesis is, however, beginning to emerge. Here, we report identification and functional analysis of a putative JmjC-domain-containing histone demethylase in Magnaporthe oryzae. Through bioinformatics analysis, we identified seven genes, ...

متن کامل

Carbamoyl Phosphate Synthetase Subunit MoCpa2 Affects Development and Pathogenicity by Modulating Arginine Biosynthesis in Magnaporthe oryzae

Arginine is a semi-essential amino acid that affects physiological and biochemical functions. The CPA2 gene in yeast encodes a large subunit of arginine-specific carbamoyl phosphate synthetase (CPS) and is involved in arginine biosynthesis. Here, an ortholog of yeast CPA2 was identified in the rice blast fungus Magnaporthe oryzae, and was named MoCPA2. MoCpa2 is an 1180-amino acid protein which...

متن کامل

PdeH, a High-Affinity cAMP Phosphodiesterase, Is a Key Regulator of Asexual and Pathogenic Differentiation in Magnaporthe oryzae

Cyclic AMP-dependent pathways mediate the communication between external stimuli and the intracellular signaling machinery, thereby influencing important aspects of cellular growth, morphogenesis and differentiation. Crucial to proper function and robustness of these signaling cascades is the strict regulation and maintenance of intracellular levels of cAMP through a fine balance between biosyn...

متن کامل

Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae

DNA methylation is an important epigenetic modification that regulates development of plants and mammals. To investigate the roles of DNA methylation in fungal development, we profiled genome-wide methylation patterns at single-nucleotide resolution during vegetative growth, asexual reproduction, and infection-related morphogenesis in a model plant pathogenic fungus, Magnaporthe oryzae. We foun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eukaryotic cell

دوره 9 7  شماره 

صفحات  -

تاریخ انتشار 2010